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Studying spin-glass physics through analyzing their ground-state properties has a long history. Although
there exist polynomial-time algorithms for the two-dimensional planar case, where the problem of finding
ground states is transformed to a minimum-weight perfect matching problem, the reachable system sizes have
been limited both by the needed CPU time and by memory requirements. In this work, we present an algorithm
for the calculation of exact ground states for two-dimensional Ising spin glasses with free boundary conditions
in at least one direction. The algorithmic foundations of the method date back to the work of Kasteleyn from
the 1960s for computing the complete partition function of the Ising model. Using Kasteleyn cities, we
calculate exact ground states for huge two-dimensional planar Ising spin-glass lattices �up to 30002 spins�
within reasonable time. According to our knowledge, these are the largest sizes currently available. Kasteleyn
cities were recently also used by Thomas and Middleton in the context of extended ground states on the torus.
Moreover, they show that the method can also be used for computing ground states of planar graphs. Further-
more, we point out that the correctness of heuristically computed ground states can easily be verified. Finally,
we evaluate the solution quality of heuristic variants of the L. Bieche et al. approach.

DOI: 10.1103/PhysRevE.78.056705 PACS number�s�: 02.70.�c, 75.10.Nr, 89.20.Ff

I. INTRODUCTION

The determination of spin-glass ground states has raised
the interest of both physicists and computer scientists. For an
introduction we refer to �1–3�. On the one hand, an analysis
of the ground-state properties sheds light on the ruling phys-
ics of the system. On the other hand, several different algo-
rithms have been developed and used for the ground-state
determination of different models.

For the two-dimensional Edwards-Anderson model �EA�
�4� with free boundaries in at least one direction, ground
states can be determined exactly with fast algorithms. In fact,
the problem is solvable in time bounded by a polynomial in
the size of the input. The latter can be achieved by a trans-
formation to a well-known graph theoretical problem—the
minimum-weight matching problem, for which efficient
implementations exist. For general nonplanar or three- or
higher-dimensional lattices, however, calculating exact
ground states is nondeterministic polynomial-time hard �NP
hard� �5�. Loosely speaking, this means we cannot expect to
be able to design a polynomial-time solution algorithm. In
practice, one can use, e.g. branch-and-cut algorithms �6�.

In this work, we focus on the polynomially solvable case
of two-dimensional lattices with free boundaries in at least
one direction. We first review and compare the main known
approaches which are those of Bieche et al. �7� and of Bara-
hona �8,9�. Then we present the approach inspired by Kaste-
leyn �10�. All methods basically follow the same idea: An
associated graph is constructed in which a minimum-weight
perfect matching is determined that is used to construct an
exact ground state. Differences occur in the constructed as-
sociated graph. It turns out that the approach inspired by

Kasteleyn is the most favorable. In fact, using the latter
method, we can determine exact ground states for lattice
sizes up to 30002, while the possible sizes computed earlier
with heuristic variants of the approach of Bieche et al. �7�
were considerably smaller. In a forthcoming article �11�, we
will analyze the physics of the system. Kasteleyn cities were
recently also used by Thomas and Middleton �12�. While
focusing on extended ground states on the torus, they show
that the Kasteleyn-city approach can be successfully used in
the planar case, too. Furthermore, they compared their imple-
mentation with an implementation of Barahona’s method. It
turned out that the approach with Kasteleyn cities is less
memory consumptive and faster. Apart from this recent
work, we are not aware of other computational studies using
Barahona’s method.

We show how to either prove correctness of heuristically
determined ground states or how to correct them using linear
programming. Despite the fact that this is fast, it is still ad-
vantageous to use the method based on Kasteleyn cities. Fi-
nally, we evaluate the quality of the solutions generated with
heuristic variants of the Bieche et al. �7� approach.

The outline of the article is as follows. In Sec. II, we
introduce the model. In Sec. III we introduce definitions nec-
essary for the literature review in Sec. IV. Finally, we report
the results in Sec. V.

II. THE MODEL

In the Edwards-Anderson model N spins are placed on a
lattice. We focus on quadratic �N=L2� lattices with free
boundary conditions in at least one direction. Toric boundary
conditions may be applied to at most one lattice axis. The
Hamiltonian of the system is

H = − �
�i,j�

JijSiSj , �1�

where the sum runs over all nearest-neighbor sites. Each spin
Si is a dynamical variable which has two allowed states, +1
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and −1. The coupling strengths Jij between spins i and j are
independent identically distributed random variables follow-
ing some probability distribution. The concentration of anti-
ferromagnetic �Jij �0� and ferromagnetic bonds �Jij �0� de-
pends on the underlying distribution. The Gaussian and the
bimodal �J distributions are often used. A spin configuration
attaining the global minimum of the energy function H is
called a ground state.

III. PRELIMINARIES

In this section, we briefly summarize some basic defini-
tions from graph theory. For further details, we refer to
�13–15� and the references therein. We associate a spin-glass
instance with a graph G= �V ,E� with vertices V �spin sites�
and edges E �bonds�. The edge set consists of unordered
pairs �i , j�, with i , j�V. More specifically, for two-
dimensional K�L lattices with free boundaries, the graph is
called a grid graph and is denoted by GK,L. In case periodic
boundaries are present in one direction, we call the graph a
half-torus or a ring. The degree deg�v� of a vertex v is the
number of edges �v ,wi��E incident at v. A path, �
=v1 ,v2 , . . . ,vk ,vi�V, is a sequence of vertices such that
�v1 ,v2� , �v2 ,v3� , . . . , �vk−1 ,vk� are edges of G and the vi are
distinct. A closed path �=v1 ,v2 , . . . ,vk ,v1 is a cycle.

In many applications a rational cost or a weight w�e� is
associated with an edge e. Let G= �V ,E� be a weighted
graph. For each �possibly empty� subset Q�V, a cut ��Q� in
G is the set of all edges with one vertex in Q and the other in
V \Q. The weight of a cut is given by w(��Q�)
=�e=�v,w����Q�w�e�. A minimum cut �MINCUT� asks for a cut
��Q� with minimum weight among all vertex sets Q�V. Let
Kn denote the complete graph with n vertices and edge set
E=V�V. A subgraph of G is a graph GH such that every
vertex of GH is a vertex of G, and every edge of GH is an
edge in G also. G= �V ,E� is called Eulerian if and only if
each vertex of G has even degree. A graph G is planar if it
can be drawn in the plane in such a way that no two edges
meet each other except at a vertex. Any such drawing is
called a planar drawing. Any planar drawing of a graph G
divides the plane into regions, called faces. One of these
faces is unbounded, and called the outer face or unbounded
face. A geometric dual graph �16� GD of a connected planar
graph G is a graph GD with the property that it has a vertex
for each face of G and an edge for each edge touching two
neighboring faces in G.

A matching in a graph G= �V ,E� is a set of edges M �E
such that no vertex of G is incident with more than one edge
in M. A matching M is perfect if every vertex is incident to
an edge in the matching. A maximum matching is a matching
of maximum weight w�M�=�e�Mw�e�. Solving the perfect
matching problem on general graphs in time bounded by a
polynomial in the size of the input remained an elusive goal
for a long time until Edmonds �17,18� gave the first
polynomial-time algorithm—the blossom algorithm. More
details about matching theory can be found in �19�.

IV. REVIEW OF THE KNOWN ALGORITHMIC
APPROACHES

Bieche et al. �7� showed that the problem of finding a
ground state for two-dimensional planar Ising spin glasses

can be transformed to a well-known graph theoretical
problem—the minimum-weight perfect matching problem
�MWPM� on general graphs. The method follows the scheme
shown in algorithm 1 in which an optimum matching is used
to construct a spin configuration minimizing the total energy.

Most commonly used exact methods, such as the ap-
proaches of Bieche et al. �7� and Barahona �8,9�, follow this
scheme. In the following, we briefly summarize these two
methods. Afterwards, we present a method following the
construction introduced by Kasteleyn �10�. More details can
be found in the recent tutorial �1� on algorithms for comput-
ing ground states in two-dimensional Ising spin glasses.

A. Review of exact methods

1. The approach of Bieche et al.

Bieche et al. �7� consider the weighted grid graph
GK,L= �V ,E� where each vertex i�V is assigned an initial
spin value Si

0= �1. Each edge e= �i , j� receives a weight
w�e�=−JijSi

0Sj
0, cf. Fig. 1. Often, the trivial configuration

S0= +1∀ Si , i�V is used.
An instance cannot only be described in terms of spins

and bonds, but also by frustrated plaquettes and paths of
broken edges. Plaquettes consist of the four cycles in the
graph. An edge is said to be satisfied if it attains its minimal
weight �−JijSi

0Sj
0=−�Jij��, otherwise it is called unsatisfied. A

plaquette is frustrated if there is no spin configuration satis-
fying all edges. In this case the plaquette has an odd number
of negative edges. For the remainder let F be the set of
frustrated plaquettes in GK,L and P the set of all plaquettes in
GK,L.

Bieche et al. �7� identify the frustrated plaquettes
as vertices of a graph, GF= �F ,EF� with F= 	f � f
is a frustrated plaquette in G
 and EF=F�F. Each edge e
= �f i , f j��EF is assigned a weight w�e� equal to the sum of
the absolute weights of the edges in GK,L crossed by a mini-
mum path connecting f i with f j. Figure 2 shows the under-
lying dual graph and Fig. 3 shows the graph GF for the grid
graph of Fig. 1.

w(e) < 0

w(e) > 0

FIG. 1. �Color online� G4,4 grid graph. Dashed lines indicate
negative edge weights.
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It is easy to see that minimizing the sum of the weights of
unsatisfied edges connecting frustrated plaquettes yields a
spin configuration of minimum energy. The latter is achieved
by determining a minimum-weight perfect matching in GF.
Finding a ground state is thus reduced to finding a minimum-
weight perfect matching M of the graph GF, and its energy is
given as

H = − �
�i,j�

JijSiSj = − �
�i,j�

�Jij� + 2 �
unsatisfied edges

�Jij�

= − �
�i,j�

�Jij� + 2w�M� .

For a detailed description of this method we refer to �1�.

2. Limits of Bieche’s approach

The approach of Bieche et al. �7� is simple and intuitive,
but comprised two major practical obstacles. First of all, in
order to obtain the dual edge weights, one has to calculate
the shortest paths in GD between all pairs of vertices. Al-
though this can be done in time and space bounded by a
polynomial in the size of the input, the calculations can take
long in practice or require a large amount of memory.

Equipped with the weights, one can construct the complete
graph GF of frustrated plaquettes. Treatable system sizes are
practically limited by the number of edges present in GF.
Assuming 32 bits for representing an edge, one needs nearly
4 gigabytes �GB� of memory just for representing EF for a
300�300 grid graph, assuming 50% of the plaquettes are
frustrated. For a 400�400 grid graph, almost 12 GB of
memory are necessary, which goes beyond the hardware re-
sources available in ordinary modern computers.

3. Simple improvement for ±J-distributed samples

For �J distributed instances, one can obtain the length of
the shortest paths directly without shortest paths calculations.
For this, we project the geometric dual graph GD on the
plane so that each vertex v is provided with definite coordi-
nates �xv ,yv� preserving the distance function using rectilin-
ear edges. Different vertices are assigned to different coordi-
nates. Then the length of paths between i and j, �
= �xi ,yi� ,�1 ,�2 , . . . ,�r , �xj ,yj� �with �l= �xl ,yl�= l�V�
traversing only through the grid graph GK,L without
crossing its border, is given as the Manhattan distance
c= �xi−xj�+ �yi−yj�. This value is to be compared with the
length of the path passing through the outer face
o, �o= �xi ,yi� ,�1 , . . . ,�k ,o ,�k+1 , . . . ,�r , �xj ,yj�. The weight
of this path is given as co=min	xi ,yi ,K−xi ,L−yi

+min	xj ,yj ,K−xj ,L−yj
. The shortest path from i to j is the
shorter of the 2. In a half-torus graph, analogous calculations
can be performed.

4. The approach of Barahona

Barahona �8,9� constructs the geometric dual graph
that contains a vertex for each plaquette and edges in case
the corresponding two plaquettes share an edge. Here the
outer face is also interpreted as a plaquette. In formulas,
GD= �P ,ED� of GK,L, where P= 	p�p is a plaquette in
GK,L
� 	o�o is the outer face plaquette
 and ED= 	e
= �pi , pj� � ∀ pi , pj � P , pi� pj� � 
. Each dual edge is as-
signed a weight according to the absolute weight of the edge
in GK,L crossed by the dual edge. Vertices pi� P are called
odd if they represent a frustrated plaquette, otherwise even.

Subsequently, the graph GD is transformed into a graph
G*. In order to do this, first every vertex pi� P with
deg�pi��3 is expanded to �deg�pi�−2� copies of degree 3.
Any even vertex remains even, expanding an odd vertex
makes one of its copies �arbitrarily� odd and the others even.
From now on, one works with vertices of degree 3 only.
Next, each vertex is transformed to a K3 subgraph: Each
edge incident to an even vertex is replaced by an intermedi-
ate vertex and two edges. At most two new vertices are in-
serted for each edge connecting two even vertices. Original
edges keep their weight, new edges obtain weight zero. For
the details, we refer to �8,9�.

On G* a MWPM is computed. Any even vertex has an
even number �including zero� of “outgoing” matching edges,
however, any odd vertex has an odd count of those edges.
After the matching is calculated, the afore expanded vertices
are shrunken, and the remaining matching edges raise short-
est paths connecting frustrated plaquettes. As the total length

v

w

o

FIG. 2. Geometric dual graph GD of the grid graph G4,4 shown
in Fig. 1 which is seen translucent. Dark gray vertices represent
frustrated plaquettes �assuming the trivial configuration S0

= 	+1 � ∀ i�V
�, and light gray vertices are unfrustrated plaquettes.

v

w

2

1

FIG. 3. Graph GF of the grid graph shown in Fig. 1. Continuous
edges indicate distance 2 between vertices, and dotted edges indi-
cate distance 1.
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of the induced paths is minimal among all possible paths, the
induced set of unsatisfied edges has minimum weight. Fol-
lowing Bieche, this corresponds to a configuration of mini-
mum weight �7�.

5. Evaluation of Barahona’s approach

Barahona’s transformation consists of two steps and is a
bit more involved than the method of Bieche et al. �7�. For a
quadratic L�L grid graph with free boundary conditions, G*

has �V*��12�L−1���L−1�+2�−12−bodd many vertices,
where bodd=3�	odd vertices
� is the number of odd vertices
in the graph GD. The graph G* is sparse as each vertex in
G* has degree 3, �E*�= 3

2 �V*�. Assuming 50% frustrated
plaquettes, the number of vertices increases approximately
by a factor of 10. Given that for bigger lattices this transfor-
mation needs less space than the one by Bieche et al. �7�, it
is preferable to the former. However, in the next section we
describe a method that works with an even smaller graph.

6. The new approach—Following in Kasteleyn’s footsteps

In this section, we follow an idea first described by Kaste-
leyn �10,20� and Fisher �21�. In these works, the goal was to
calculate the configurational partition function for dimer cov-
erings on a lattice. The authors exploited that the calculation
of the partition function of the Ising model can be reduced to
the number of ways in which a given number of edges can be
selected to form closed polygons �22�, i.e., a polygon con-
figuration such that each lattice vertex has even degree of
selected incident polygon edges. The latter can be computed
as follows. First, one constructs a so-called cluster lattice
graph which is generated by replacing each vertex of the
lattice by a Kasteleyn city �a K4 subgraph�. Now the ex-
panded graph is oriented such that the associated skew-
symmetric matrix D shows the property that �Pf�D��, where
Pf�D� denotes the Pfaffian of the skew-symmetric matrix,
gives the number of dimer coverings. As there is a one-to-
one correspondence between the number of polygon configu-
rations and the number of dimer coverings, this method
yields the generating function for polygon configurations and
therefore the generating function for the Ising model.

Thomas and Middleton used Kasteleyn cities for calculat-
ing extended ground states on the torus in order to gain rel-
evant information about the physics of spin glasses on toroi-
dal lattices. Furthermore, they point out that the method
yields an exact ground-state algorithm on planar lattices.

A closely related approach was used later by Galluccio et
al. to design an exact algorithm for the computation of the
partition function for the Ising problem that runs in polyno-
mial time for several models of interest �23–25�, e.g., for
two-dimensional toroidal lattices with �J distribution.

Here, we focus on planar grid graphs. The distribution of
the edge weights is arbitrary. GK,L is transformed into a
pseudodual graph GK4

as shown in Fig. 4. For simplicity, we
confine ourselves to quadratic grid graphs in the following,
however all results can be easily transformed to general grid
graphs.

Formally, first the geometric dual of the grid graph GL,L
is constructed, then the outer face vertex is expanded into

2L+1 �L in the half-torus case� copies, such that the resulting
graph is an intermediate grid graph GL+1,L+1 �GL,L+1�. The
edge weights of GL+1,L+1 are set to the weights of the edges
of GL,L that are crossed by the edges of GL+1,L+1. Edges that
do not cross any other edge obtain weight zero. Next, each
vertex of GL+1,L+1 is expanded to a K4 subgraph. Again,
newly constructed edges receive weight zero.

The transformation for the half-torus graph is done simi-
larly, but the intermediate graph is a grid-half-torus graph
GL,L+1 which is a grid with L−1 additional edges. Edge
weights are set as just described. Finally, all vertices are
expanded to a K4 subgraph as before. We denote by Ginter the
intermediate graph either for the underlying grid or half-
torus graph.

On the transformed graph GK4
we calculate a minimum-

weight perfect matching M.
The next step is to shrink all the K4 subgraphs back, re-

sulting in the graph Ginter. Also all copies of the outer face
vertex are shrunken. Dealing again with the geometric dual
graph of GL,L, we take the subgraph GS= (Q ,��Q�) of the
geometric dual graph that consists only of dual edges that
were matched, and all dual vertices with degree greater than
zero restricted to matched edges. This subgraph GS is an
Eulerian graph as each dual vertex is incident to an even
number of matching edges. It is well known that there exists
a one-to-one correspondence between Eulerian subgraphs in
the dual graph and cuts in the original graph. So, Q defines a
cut ��Q� in the graph GL,L, cf. Fig. 5.

In order to show the correctness of the transformation, we
exploit that each ground state corresponds exactly to a MIN-
CUT ��Q� in the grid graph GL,L. A cut separates the vertex
set into two disjoint sets W and V \W. Vertices in the same
partition are assigned the same spin value. Cut edges are

w(e)

w(e) = 0

FIG. 4. Expanded dual graph GK4
for the grid graph G4,4.
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those connecting a pair of vertices with different spin values.
The Hamiltonian can be stated as

H = − �
�i,j�

JijSiSj = − �
�i,j�

Jij + 2w„��Q�… . �2�

We show that the edge set determined with the method
described above corresponds to a minimum cut,

As w�M� is the weight of a minimum-weight perfect
matching, the weight of the subgraph GS is minimum, and
thus also the weight of the cut ��Q�.

As Kasteleyn’s original method yields the complete parti-
tion function, one might ask why the algorithm was modified
so that only the ground state is determined. The reason for
this is twofold. First of all, minimum-weight perfect match-
ings can be computed in graphs with over 106 vertices, pro-
vided they are sparse, which allows us to go to very large
system sizes. Furthermore, the partition function does not
encode the ground-state configuration itself but only its en-
ergy.

7. Advantages of the approach

The method is intuitive and its implementation is straight-
forward. We present some computational results in Sec. V.
For a quadratic L1�L1 grid graph GL1,L1

we construct a
graph GK4

L1,L1 with �VK4

L1,L1�=4�L1+1��L1+1� vertices and
2�VK4

L1,L1�−4�L1+1� edges. For an L2�L2 ring graph GL2,L2

the construction yields a graph GK4

L2,L2 with �VK4

L2,L2�=4L2�L2

+1� vertices and 2�VK4

L2,L2�−2L2−4 edges. In any case, the
resulting graphs are very sparse. More specifically, let us
compare for an L�L grid the sizes of the graphs in which a
minimum-weight perfect matching is computed. Assuming
that around 50% of the original plaquettes are frustrated, the
graph based on Kasteleyn cities contains only about one third
of the number of vertices and one fourth of the number of
edges contained in the graph constructed with Barahona’s
method.

As the running time of the matching algorithm scales with
the number of vertices and edges in the graph, the Kasteleyn
construction is preferable to both the Bieche et al. �7� and the
Barahona construction.

B. Computing domain walls

For the computation of domain walls, we follow the usual
approach �26–28�. A ground state of the system is calculated,
having energy E0. To introduce a domain wall, the system is
then usually perturbed by flipping all couplings along a row
or a column in the lattice. The ground state for this system is
calculated, having energy E0

pert. The domain-wall energy for
a given sample is then given by 	E= �E0

pert−E0�. We proceed
as described in �29,30�, by first determining a ground state of
an EA spin glass with periodic boundary conditions in one
direction, say along the x axis. Then the signs of L edges in
one column along the y axis are flipped. The symmetric dif-
ference of these ground states yields a domain wall.

With the help of linear programming �31,32�, one does
not need to calculate the second ground state from scratch
but can flip the weight of the specific L edges one by one,
each followed by a reoptimization step. It is also possible to
flip all signs at the same time and do a global reoptimization
step. However, in practice for �1 distributed weights it often
does not pay off to do the reoptimization steps, and so we
calculate both ground states from scratch.

C. Modified approach of Bieche et al.:
Review of a heuristic method

As argued above, the original approach of Bieche et al.
�7� suffers from extensive memory usage. In order to over-

w(e)

+

−

+

+ +

−

w(e)

FIG. 5. �Color online� Backward transformation. A matching
�thick lines� in GK4

induces a Eulerian subgraph in GD and therefore
a cut in the grid or half-torus graph. The vertex partition consists of
the vertices with spin value +1 �
� in one partition and those with
spin value −1 ��� in the other.
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come these limits, some modifications have been proposed
that yield heuristic methods for low-energy states that are
however not necessarily exact ground states. In these heuris-

tics, a reduced graph G̃red is used instead of a complete one.

An approach often used is to introduce in G̃red, only those
edges with weight less than or equal to a fixed value cmax
�often cmax=cJmax is chosen, with c=4,5 ,6�. For continuous
spin systems, Weigel �33� recently suggested to introduce for
each vertex only the k lightest edges. He used this cutoff rule
successfully for a matching routine embedded in a genetic
algorithm.

The reasoning behind this is that “heavy”-weighted edges
are rarely contained in an optimum solution. This can be
assumed to be true for, e.g., �1 distributed couplings and
50% negative weights, for which very often true ground
states are reached in practice.

Using the reduced graph G̃red, Hartmann and Young de-
termined high-quality heuristic ground states for L�L lat-
tices with �1 distribution. They could go up to L�480 �30�.
Also using the heuristic variant based on the approach of
Bieche et al. �7�, Palmer and Adler report results for L
�1801 with the choice of cmax=6Jmax �34�.

For different, especially smaller, percentage of negative
weights, the quality of the heuristic decreases. This can be
understood as follows. An edge �u ,v� in the transformed
graph is assigned a weight that equals the sum of the abso-
lute weights of the edges in GK,L crossed by a minimum path
connecting u and v. u and v correspond to a pair of frustrated
plaquettes. The latter can be assumed to be spread all over
the system. In the case of small p, the total number of frus-
trated plaquettes is small. Therefore, the weight of a mini-
mum path connecting a pair of them can become large which
can cause a heuristic with a limited value of cmax to fail.

Furthermore, for a different distribution of the couplings,
e.g., Gaussian couplings, this heuristic variant has to be used
carefully, as good values for cmax are not evident. Certainly,
removing heavy weighted edges will result in reduced
graphs, but it is not clear beforehand which weights should
be considered heavy. Applying different cutoff rules, e.g.,
vertex-degree constraints, might be helpful as they were al-
ready used for thinning graphs, but suitable cutoff values
depend still on the underlying distribution of the couplings.

An experimental evaluation will be given in Sec. V.
In the next section, we describe how the correctness of

heuristic ground states can be verified using linear program-
ming.

1. Checking whether a spin configuration
actually defines a ground state

Suppose we have a spin configuration at hand that has
been computed by determining an optimum matching on the
graph only containing “light” edges and we want to test
whether it is a correct ground state.

First, we compute an optimum matching on the same re-
duced graph. In so-called pricing steps, we determine
whether yet neglected edges exist that need to be taken into
account in order to ensure correctness. In case such an edge
is reported by pricing, it is introduced in the reduced graph.
The process is iterated until no edge is returned any more.
Pricing is a general feature in linear programming and com-
binatorial optimization. For more details, we refer to
�31,32,35�.

Pricing steps can be performed with Cook and Rohe’s
state-of-the-art Blossom IV code �36� by implementing small
modifications. We give some computational results in Sec. V.

V. COMPUTATIONAL RESULTS

The method proposed in Sec. IV A 6 can be used for any
distribution of the couplings. Here, we focus on �1 distrib-
uted instances. The concentration p of antiferromagnetic
bonds was set to 0.5. For the computations we used Intel
Xeon CPU with 2.3 GHz and AMD Opteron Processor 248
with 2.2 GHz, each with less than 16 GB random access
memory �RAM�. The largest instances L�1500 were done
on Xeon processors with 16 GB RAM. The physics analysis
done with our method will be presented in a forthcoming
article �11�.

Running times for different sizes of grid graphs �K=L
=100, 150, 250, 500, 700, 1000, 2000, and 3000� together
with the number of computed samples, are shown in Table I.
For smaller grids with L�500, we computed between 2
�105 and 5�105 instances per size. For medium sized lat-
tices 700�L�1500, we ran several thousand samples for

TABLE I. Running times and number of computed samples for different spin-glass instance sizes with
free boundary conditions and �1 distributed couplings �p=0.5�.

Lgrid Average time Minimum time Maximum time No. samples

100 0.67 ��0.00� 0.12 3.47 50925

150 2.03 ��0.01� 0.31 16.80 29750

250 9.70 ��0.03� 1.04 121.18 36800

500 109.62 ��0.79� 5.79 1406.24 20867

700 323.19 ��4.54� 18.96 5233.04 5499

1000 1200.33 ��17.60� 59.49 9717.01 3483

1500 5280.29 ��111.79� 288.58 58036.33 2330

2000 14524.34 ��503.69� 701.16 117313.32 942

3000 61166.70 ��4920.19� 3017.97 316581.15 157

G. PARDELLA AND F. LIERS PHYSICAL REVIEW E 78, 056705 �2008�

056705-6



each size, whereas for the largest systems of 30002 spins we
generated results for 157 samples. Lattices with L�500 can
be computed within less than 2 minutes on average, whereas
one ground-state determination for the biggest size requires
on average 24 h CPU time on a single processor. Results of
samples for spin glasses with periodic boundary conditions
in one direction are presented in Table II. The running times
given in Tables I and II scale with L3.50�5� for L�L spin
glasses. In total we invested about 600 CPU days for our
experiments.

It turns out that free boundary samples are computation-
ally a bit more demanding than samples with periodic bound-
aries in one direction because the intermediate graphs Ginter
are larger. For other concentrations of antiferromagnetic
bonds the presented data �running times, memory usage, etc.�
are comparable, as our method, unlike the method of Bieche
et al. �7�, does not depend on the concentration of antiferro-
magnetic bonds but only on the grid-graph size KL.

Table III reflects the average over the maximal memory
usage needed in the ground-state calculations. The memory
usage roughly scales with L1.9 for Ising spin glasses with free
boundary conditions and with L1.6 for Ising spin glasses with
periodic boundaries in one direction. Both from the CPU
time and from the necessary memory we conclude that the
method is very fast. It needs considerably less memory than
the commonly used method of Bieche et al. �7�, which in its
heuristic variant allows one to treat only smaller system sizes
than reported here. However, we also note that a good statis-
tics for system sizes beyond 30002 would currently be hard
to reach.

A. Heuristic ground states and their correction

In this section, we explore the quality of the heuristic
ground-state calculation using the method of Bieche et al. �7�
for two-dimensional �J Ising spin glasses with free bound-
ary conditions. Within this we use the verification technique
explained in Sec. IV C.

We consider planar L�L lattices with L=164 and �1
distributed couplings. First we study these lattices with a
concentration p=0.5 of antiferromagnetic bonds. It turns out
that out of 9912 computed samples, 9 �0.091%� were wrong
when using cmax=4. Thomas and Middleton �12� stated 1.5%
inexact solutions on toric samples with L�128 and c
=8Jmax. We conclude that in practice the heuristic almost
always returns true ground states if cmax and p are suitably
chosen.

The overall average running time was 45.26 sec, compar-
ing an average of 82.97 sec when pricing was necessary with
45.23 sec without pricing. In our tests, one pricing step was
always sufficient to correct a wrong ground state. Using the
Kasteleyn approach, a ground state computation takes on av-
erage only around 1 sec for this lattice size �on Xeon proces-
sors�, as can be seen in Table IV.

In order to assess the influence of the cutoff parameter
cmax on the number of wrong results and the time to correct
them, we varied p and cmax for the �1 164�164 lattices
�using the AMD Opteron processors�. In Table V we show
results, always averaged over 100 instances.

Several conclusions can be drawn from this experiment.
First, small values of cmax lead to many wrong results. For
example, for cmax=3 up to 100% of the results were wrong,
and the solutions have to be handled with care. Then, the
quality of the heuristic increases with increasing cmax. For
large enough value, the solutions are very often correct and
only need a verification step in order to prove their correct-
ness.

Apart from this trend, the results suggest that the quality
of the results highly depends on the chosen combination of
cmax and p. Clearly, for small percentage p one has to choose
a higher cutoff value cmax in order to generate high-quality
solutions. For example, for cmax=3, all 100 results were
wrong when the percentage of negative edges was chosen as
p=0.1, whereas 39 results were wrong for p=0.5. This can
also be seen by looking at different cmax values but fixed p
values. For cmax�6 and p=0.1 always at least one percent is
wrong. This means that especially for smaller values of p,
one has to make sure that the cutoff value is chosen big
enough. The reason for this behavior is that the weight of a
minimum path connecting a pair of frustrated plaquettes can
become large for small p. Therefore, the minimum-weighted
perfect matching might contain heavy edges. cmax has to be
chosen large enough in order to ensure that these heavy
edges are contained in the reduced graph. As argued before,
the necessity of having to choose high cutoff values can lead
to memory problems as the edge density of the generated
reduced graphs increases. These difficulties can be avoided
by using the approach based on Kasteleyn cities.

From Table V we see that pricing takes only negligible
running time. As a conclusion, if the Bieche et al. �7� algo-
rithm is used to determine ground-state properties, it is ad-

TABLE II. Running times and number of computed samples for
different spin-glass instance sizes with periodic boundary condition
in one direction and �1 distributed couplings �p=0.5�.

Lring

Average
time

Minimum
time

Maximum
time No. samples

400 36.00 ��1.19� 3.27 712.67 1400

500 88.31 ��2.91� 5.65 1239.81 1900

700 319.38 ��3.53� 17.46 12712.34 15847

1000 1129.03 ��27.20� 49.87 18577.58 3000

TABLE III. Memory usage for different ��1, p=0.5� sample
sizes.

Lgrid � memory Lring � memory

100 158.7 MB

150 158.8 MB

250 163.4 MB

400 245.6 MB

500 332.5 MB 500 321.6 MB

700 572.7 MB 700 544.6 MB

1000 994.6 MB 1000 993.7 MB

1500 2.052 GB

2000 3.568 GB

3000 7.832 GB
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TABLE IV. Average running times �in sec� over 10.000 instances, using the method based on Kasteleyn
cities on �1 164�164 grids with various concentration of antiferromagnetic bonds.

�V�

% �w�e��0�

10 20 30 40 50

1642 0.92 ��0.005� 1.28 ��0.005� 1.32 ��0.007� 1.17 ��0.007� 1.11 ��0.009�

TABLE V. Different cmax values used within the heuristic version of the Bieche et al. approach for each
100�1 164�164 grid graphs with various concentration of antiferromagnetic bonds.

% edges w.
w�e�=−1

Average
time �sec�

Pricing
time �sec�

Average No. of
pricing
steps

No. of
wrong
results

cmax=3

10 16.91 ��0.70� 9.10 2.03 100

20 51.59 ��1.13� 18.30 1.11 93

30 56.87 ��1.57� 22.42 1.00 49

40 56.95 ��1.59� 24.01 1.00 36

50 58.72 ��1.69� 25.10 1.00 39

cmax=4

10 15.60 ��0.35� 4.76 1.09 77

20 37.37 ��0.74� 17.99 1.00 6

30 49.93 ��0.67� 0.00 0.00 0

40 53.74 ��0.72� 0.00 0.00 0

50 54.02 ��0.76� 0.00 0.00 0

cmax=5

10 13.04 ��0.30� 4.64 1.00 18

20 37.96 ��0.55� 0.00 0.00 0

30 52.41 ��0.93� 0.00 0.00 0

40 56.79 ��1.00� 0.00 0.00 0

50 59.30 ��1.01� 0.00 0.00 0

cmax=6

10 13.11 ��0.21� 5.04 1.00 1

20 42.52 ��0.71� 0.00 0.00 0

30 59.05 ��1.30� 0.00 0.00 0

40 65.14 ��1.44� 0.00 0.00 0

50 62.26 ��1.16� 0.00 0.00 0

cmax=7

10 14.06 ��0.23� 0.00 0.00 0

20 46.70 ��0.89� 0.00 0.00 0

30 66.18 ��1.65� 0.00 0.00 0

40 73.18 ��1.95� 0.00 0.00 0

50 69.69 ��1.52� 0.00 0.00 0

cmax=8

10 15.01 ��0.29� 0.00 0.00 0

20 53.10 ��1.32� 0.00 0.00 0

30 74.54 ��2.15� 0.00 0.00 0

40 83.20 ��2.32� 0.00 0.00 0

50 82.06 ��2.13� 0.00 0.00 0
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vantageous to do the pricing steps, too, independent of the

size of the reduced graph G̃red. However, despite the fact that
pricing is very fast, the heuristic together with the verifica-
tion is still considerably slower than the method proposed
here based on Kasteleyn cities, cf. Table IV.

It is also interesting to assess the quality of the heuristic
for different distribution of the couplings, e.g., for Gaussian
distributed couplings. We study grid graphs GL,L with L
=50,100,150. The grid graph size L was limited due to the
fact that the generation of the graphs GF takes a long time.
This is explainable as one is in the need of all-pair shortest
path calculations for the set of frustrated vertices on the dual
graph. The latter is a polynomially solvable problem, how-
ever, the computations can take long. In our tests, computing
the shortest paths usually takes much longer than computing
the ground states itself. In Table VI the running times for the
matching on the different reduced graphs can be seen.

As it is not clear beforehand how big the cutoff parameter
cmax should be, we let ourselves be guided by the corre-
sponding values used in instances with bimodal distribution.
More specifically, for some value of cmax �we used cmax=5�
we compute the average percentage of light edges from GF

that are contained in the reduced graph G̃red in instances with
bimodal distribution. For L=50, we find that in �1 distrib-
uted instances with p=0.5 on average the 8% lightest edges
are used �this percentage reduces to an average of 2% for
L=100 and to 1% for L=150�.

For Gaussian distributed instances, we build the reduced
graphs with the same percentages of light edges, i.e., 8%
�2% or 1%� light edges for L=50 �L=100, L=150 respec-
tively.� Results are shown in Table VI. First of all, it turns out
that for small grid graphs many results are wrong. For L
=50, about 12.5% of the calculated instances do not find
correct ground states, and a higher cutoff value has to be
used. Considering larger grid graphs the situation looks simi-
lar. 47% �52%� instances computed the wrong ground state
for L=100 �L=150�.

For L=50, we have to go up to a percentage of 16%
lightest edges �corresponding to cmax�8�, for L=100 to 4%
�corresponding to cmax�7� and for L=150 we have to take
into account the 2.5% lightest edges, corresponding to cmax
�8, in order to ensure correctness of the results for our test
data. Again, when comparing the running times for 1502 lat-
tices, it is by roughly a factor of 25 faster to use the Kaste-
leyn city approach instead of a heuristic Bieche method �7�.

As the performance of the matching routine scales with
the graph sizes, more specifically with the number of vertices
and edges, we study the reduced graphs with respect to these
two entities. Usually, the graphs for computing the matchings
are dense. This is especially true for small grid graphs �L
=50�, where 16% of the light edges are needed. Increasing
the grid graphs leads to a considerable decrease of needed
light edges, and decreasing density. �The density of a graph
with n vertices is defined as the number of its edges divided
by the number of edges of the complete graph Kn.� Never-
theless, in our experiments the grid graphs with L=100
�L=150� contain on average �V�=4901�5 ��V�=11103�8�
vertices. Taking 4% �2.5%� of all edges means in absolute
numbers 4.803�9��105 �1.541�2��106, respectively� edges,
which are large and dense graphs. This has to be compared
with the graphs used within the Kasteleyn approach. Here we
have for L=100 �L=150� graphs with �V�=40 804 ��V�
=91 204� and 8.120�104 �1.818�105� edges. In fact, the
graphs we deal with have more vertices but are considerably
sparser. The Blossom IV routine can compute matchings in
very large graphs, provided their density is low. This fact is
also reflected in the better running times for the Kasteleyn
approach presented in this section. Comparing with the situ-
ation for instances with bimodal distributed edge weights, we
see from Table V that a value cmax=4 in the case of p=0.5
yields good results. For L=100 �L=150� we have �V�
=4901�4 ��V�=11114�7� with �E�=1.58�7��105 ��E�
=3.66�1��105�, which are about 1.3% �0.6%� edges of the
complete graph. Thus, the graphs with bimodal distribution
can be chosen sparser than in the Gaussian case �for cmax
=4�. However, these graphs are usually denser than the
graphs used in the Kasteleyn approach.

VI. CONCLUSIONS

We presented a simple algorithm �Sec. IV A 6� based on
Kasteleyn cities. The algorithmic foundations of this method
date back to the work of Kasteleyn �10� from the 1960s in
which he computed the complete partition function for the
Ising model. Using this approach, we can compute exact
ground states for two-dimensional planar Ising spin-glass in-
stances. The method is easy to implement, fast, and has only
limited memory requirements. According to our knowledge,
the treatable system sizes are considerably bigger than the
ones computed earlier and are always provably exact. Tho-
mas and Middleton �12� used Kasteleyn cities for studying
extended ground states. Furthermore, they state that the
method can also be used for determining exact ground states
of planar graphs.

We evaluated different established exact methods and
compared them with respect to running time and memory

TABLE VI. Size of reduced graph G̃red when using Gaussian
distributed couplings compared to the achieved quality by the heu-
ristic variant of the Bieche et al. approach.

L
cmax

��1 case�
% lightest edges
�Gassian case�

% wrong
results

matching
time �sec�

50 5 8.0 12.5 0.11 ��0.01�
6 12.0 2.0 0.18 ��0.01�
7 15.0 2.0 0.23 ��0.01�
8 16.0 0.0 0.24 ��0.01�

100 5 2.0 47.0 2.68 ��0.20�
6 3.0 2.0 7.13 ��0.50�
7 4.0 0.0 11.27 ��0.80�
8 5.0 0.0 23.20 ��1.60�

150 5 1.0 52.0 34.60 ��2.21�
6 1.4 7.0 49.34 ��2.97�
7 1.9 0.0 66.70 ��4.00�
8 2.5 0.0 85.18 ��5.14�
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requirements. It turned out that the approach presented here
is both considerably faster and needs less memory than the
methods proposed earlier. We showed how heuristically
computed ground states can be verified or corrected fast us-
ing mathematical optimization. However, the method based
on Kasteleyn cities still outperforms this approach. Finally,
we evaluated the solution quality of heuristic variants of the
Bieche et al. �7� approach.

In the future, we will make our program available in the
public domain via the Cologne Spin Glass server �37�

Algorithm 1

CALCULATE A GROUND STATE OF A K�L SPIN GLASS

Input: PLANAR GRID GRAPH GK,L

Output: SPIN CONFIGURATION S MINIMIZING THE

TOTAL ENERGY H
1. CONSTRUCT AN APPROPRIATE DUAL GRAPH G̃

2. CALCULATE A MWPM M IN G̃

3. USE M TO COMPUTE SPIN CONFIGURATION S AND

ENERGY H
4. return S AND H

ACKNOWLEDGMENTS

We thank Michael Jünger for fruitful discussions and Vera
Schmitz for adapting Blossom IV’s pricing method as de-
scribed above. Thanks to Frank Baumann and Olivier C.
Martin for commenting on an earlier version of this article
and to Alan Middleton for helpful communications. We are
indebted to two anonymous referees for their valuable com-
ments. Last but not least, we thank Oliver Melchert for
stimulating discussions and for providing us with some
ground-state data. Financial support from the German Sci-
ence Foundation is acknowledged under Contract No. Li
1675/1-1. Partially supported by the Marie Curie RTN Ado-
net Contract No. 504438 funded by the EU.

�1� A. Hartmann, in Rugged Free Energy Landscapes, edited by
W. Janke, Lecture Notes in Physics Vol. 736 �Springer-Verlag,
Berlin, 2008�, pp. 67–106.

�2� A. K. Hartmann and H. Rieger, Optimization Algorithms in
Physics �Wiley-VCH, New York, 2002�.

�3� H. Rieger, in Frustrated Systems: Ground State Properties via
Combinatorial Optimizations, edited by J. Kertész and I. Kon-
dor, Lecture Notes in Physics Vol. 501 �Springer-Verlag, Ber-
lin, 1998�.

�4� S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5,
965 �1975�.

�5� C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-
tion: Algorithms and Complexity �Prentice-Hall, Inc., Upper
Saddle River, NJ, 1982�.

�6� F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi, in New Opti-
mization Algorithms in Physics, edited by A. K. Hartmann and
H. Rieger �Wiley-VCH, New York, 2004�, pp. 47–68.

�7� L. Bieche, J. P. Uhry, R. Maynard, and R. Rammal J. Phys. A
13, 2553 �1980�.

�8� F. Barahona, J. Phys. A 15, 3241 �1982�.
�9� F. Barahona, R. Maynard, R. Rammal, and J. P. Uhry, J. Phys.

A 15, 673 �1982�.
�10� P. W. Kasteleyn, J. Math. Phys. 4, 287 �1963�.
�11� G. Pardella, F. Liers, and F. Krzakala �unpublished�.
�12� C. K. Thomas and A. A. Middleton, Phys. Rev. B 76,

220406�R� �2007�.
�13� B. Bollobás, Modern Graph Theory, Graduate Texts in Math-

ematics Vol. 184 �Springer-Verlag, New York, 1998�.
�14� R. Diestel, Graph Theory, Graduate Texts in Mathematics Vol.

173 �Springer-Verlag, Heidelberg, 2006�.
�15� F. Harary, Graph Theory �Addison-Wesley, Reading, MA,

1969�.
�16� F. Harary, in Proceedings of the Third International Confer-

ence on Combinatorial Mathematics �New York Academy of
Sciences, New York, NY, 1989�, pp. 216–219.

�17� J. Edmonds, J. Res. Natl. Bur. Stand., Sect. B 69B, 125
�1965�.

�18� J. Edmonds, Can. J. Math. 17, 449 �1965�.
�19� L. Lovász and M. D. Plummer, Matching Theory, Annals of

Discrete Mathematics Vol. 29 �North-Holland, Amsterdam,
1986�.

�20� P. W. Kasteleyn, Physica �Amsterdam� 27, 1209 �1961�.
�21� M. E. Fisher, J. Math. Phys. 7, 1776 �1966�.
�22� C. Domb, Adv. Phys. 9, 245 �1960�.
�23� A. Galluccio and M. Loebl, Electron. J. Comb. 6 �6�, 1 �1999�.
�24� A. Galluccio and M. Loebl, Electron. J. Comb. 6 �7�, 1 �1999�.
�25� A. Galluccio, M. Loebl, and J. Vondrák, Phys. Rev. Lett. 84,

5924 �2000�.
�26� N. Kawashima and H. Rieger, Europhys. Lett. 39, 85 �1997�.
�27� W. L. McMillan, Phys. Rev. B 30, 476 �1984�.
�28� H. Rieger, L. Santen, U. Blasum, M. Diehl, M. Jünger, and G.

Rinaldi, J. Phys. A 29, 3939 �1996�.
�29� R. Fisch and A. K. Hartmann, Phys. Rev. B 75, 174415

�2007�.
�30� A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 180404�R�

�2001�.
�31� V. Chvátal, Linear Programming, �Freeman and Company,

New York, 1983�.
�32� G. L. Nemhauser and L. A. Wolsey, in Discrete Mathematics

and Optimization �Wiley-Interscience, New York, NY, 1999�.
�33� Martin Weigel, Phys. Rev. E 76, 066706 �2007�.
�34� R. G. Palmer and J. Adler, Int. J. Mod. Phys. C 10, 667

�1999�.
�35� W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A.

Schrijver, Combinatorial Optimization �Wiley, New York, NY,
1998�.

�36� W. Cook and A. Rohe, INFORMS J. Comput. 11, 138 �1999�.
�37� The Cologne Spin Glass server is located at http://

cophy.informatik.uni-koeln.de/research.html

G. PARDELLA AND F. LIERS PHYSICAL REVIEW E 78, 056705 �2008�

056705-10


